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Abstract 
 
Correlation is used frequently both in the classroom and in professional 
environments to illustrate and summarize investment know-how, especially with 
regard to diversification. Pedagogically, the initial build-up on correlation, which 
reaches its climax while describing a hypothetical two-variable optimization case, 
abruptly disappears when the discussion reaches optimizations of several 
securities, thereby stopping short of running a full-fledged, correlation-based 
optimization. Why is that so? We offer some explanations. First, correlations 
initially seem to provide clarification of the workings of the optimization, 
specifically with respect to how security risk-relations affect optimal weights. 
However, the variable transformation required changes coordinates, thus making 
correlation-based optimal weights and the desired information hard to understand. 
Second, correlation-based optimizations may be counterproductive. Nobody with 
a minimum of financial sophistication would try to make up covariance estimates; 
correlations, however, are easy to make up, which may make one overstate their 
practical value. Third, while mean-variance optimal weights can be easily 
constructed from correlation-based optimal numbers, not transforming the optimal 
numbers back to the mean-variance values deforms the information processed. We 
do not expect correlation-based optimizations to replace mean-variance ones 
except in specialized cases (e.g., small portfolios where investors may have extra-
knowledge of security relationships). 
  
Keywords: Portfolio optimization, mean-variance, correlations, regressions. 
__________________________________________________________________ 
 

1. Introduction 
 
Diversification is the elusive reward that portfolio theory offers to investors. To 
study such potential diversification one can go directly to its source: the variance-
covariance matrix quantifying relationships among securities. In the case of stocks 
and many other investments, this matrix is hard to understand because of the units 
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in which the magnitudes are expressed (roughly corresponding to squared returns). 
A more attractive prospect is to look at the matrix of correlation coefficients, 
which is easy to understand and, perhaps because of that, popular enough to 
occasionally even appear in newspapers, e.g., [1]. A correlation coefficient 
quantifies how the two variables move together and is usually expressed in 
percentage form. Presumably, optimizing a portfolio using a correlation matrix 
would link optimal weights to correlations and enhance our understanding of the 
whole process. Unfortunately, such optimizations are nowhere to be seen 
(textbooks, literature), a rather peculiar absence that motivated our investigation. 
We provide correlation-based portfolio optimizations and study their practical and 
pedagogical value.  
The correlation coefficient indicates how one variable moves with another. It is 
computed to range between +1 and -1. These extremes indicate full 
synchronization: positive, when the variables move up/down together; negative, 
when one variable moves up and the other moves down. Moving away from ±1 
indicates same ―qualitative‖ movement but with less strength. The intermediate 
point, a correlation of zero, indicates that, based on the data being used, the 
movements of each variable do not seem to be co-related to the movements of the 
other variable. A correlation of zero is associated with ―insurance‖ --if a life 
insurance company selling policies to two individuals; it is best for them not to be 
related at all. It is appropriate to note that the concept ―relationship‖ is wider and 
more complex than that of co-relation, which is restricted to a paired, observation-
by-observation association of numerical variables. The study of co-relationships 
using leads and lags is one of the more complex areas of econometric analysis. 
 
The co-movement described in the previous paragraph applies to investments as 
well. Clearly, if one investment goes down, it would be good if the other 
investment doesn’t follow. But if one investment goes down, a negative 
correlation would offer support to the idea that at least one of the assets will go up 
–this is the core of the ―diversification‖ concept. A third major risk management 
principle, ―hedging‖, is also best explained with the help of correlation. 
Establishing positions on perfectly negatively correlated assets –the perfect hedge, 
as in ―hedging your bets‖-- would offer the highest likelihood to having some up 
position at the end of the trading horizon. Derivative securities were custom-made 
for hedging: instead of buying and selling (or selling short) the same asset to get 
the perfectly negative correlation, one would take a given position in a given asset 
and the contrary position on its derivative (forward, futures, or options). Further, 
to cap it all, the correlation coefficient can easily be expressed as a percentage, 
which facilitates taking advantage of the information it conveys.  
Again, why do we not run portfolio optimizations with correlation matrices? In 
order to answer, we must first examine the effects of certain transformations of 
variables. Next, we must evaluate the benefits and the limitations of using 
correlation matrices in portfolio optimization. What we discover in this analysis 
may not appear favorable to correlation-based optimizations. However, this does 
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not imply correlation analysis has no usefulness. For example, correlation-based 
analysis may be helpful when considering portfolios of a few securities (limited 
diversification) where investors may have some extra-knowledge of variable 
relationships. 
 
 
 
2. Variable Transformations, Regression Analysis, and Portfolio 
Optimization 
 
Optimal portfolio weights can be obtained by maximizing the following 
unrestricted function: 
 
F(x) = - ½ x’ A x + x’ b (1) 
 
This is a quadratic equation composed of a quadratic form (x’ A x) and a vector 
(x’ b), where A and b represent the covariance matrix and the vector of average 
individual stock returns, respectively. The first order conditions provide a set of 
simultaneous equations, A x 
= b. Optimal weights are calculated by normalizing the x auxiliary variables; that 
is, wi* = xi / Σ xi *. These are the expressions for the portfolio return and its 
variance, respectively: rp  
= w’ b, and varp = w’ A w.   
The optimal portfolio thus calculated is the so-called ―tangent‖ portfolio, which 
is the one that maximizes the return-to-risk ratio. This is also the portfolio that 
includes the usual  
(linear) arbitrage relationships (Σwi = 1= wp , Σwi ri = wp rp = rp ), which implies 
that the portfolio cannot have more value than any of its parts. The algebraic 
formulation of portfolio optimization in (1) above keeps the analysis in the well-
known area of simultaneous equations systems (SES), which is also shared by 
regression analysis.  
We could think of applying linear algebra techniques to the first order conditions 
of the mean-variance model to study what types of equivalent transformations 
would change the usual mean-variance optimization into a standardized mean-
correlation specification (C x = d; where C and d would now represent correlation 
matrix, and the vector of standardized means, respectively). As per common usage 
in linear algebra, equivalent transformations are those that do not alter the set of 
optimal solutions in a system of simultaneous equations. We started to pursue this 
course of action and, right away, we noticed that the potential changes would not 
only change the coordinate system of reference, but would alter the right-hand 
side by changing the units of the average returns as well. Unfortunately, 
equivalent transformations seem to cloud the optimization with seemingly 
arbitrary changes, and they cannot produce a straightforward way to re-state 
mean-variance results. A more advantageous tactic is to exploit the relationship 
between regression analysis and portfolio optimization to study the effects of 
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certain variable transformations which, as it happens, have been well-known to 
statisticians since the dawn of econometric analysis. The regression approach to 
portfolio optimization was first developed by Jobson and Korkie [2], and further 
studied by Britten-Jones [3] and Tarrazo [4].  
Tables 1 and 2 study the effects of some well-known transformations in the 
context of ordinary, multivariate regression (y = X b + u). Some results could be 
obtained using probability distributions and mathematical statistics but it is more 
advantageous to keep to straightforward linear algebra. Table 1 shows the matrix 
approach to ordinary least squares for both the original and the mean-adjusted 
variables. Note that mean-adjusting the regressors, but not the regressand, would 
produce the same slope estimates but higher fitting errors, which means we need 
to adjust means of all variables, or none. When we do so, the two regressions in 
Table 1 are exactly equivalent (same R-squared and associated goodness of fit 
indicators). Note the role of the interplay between the intercept, calculated with 
the usual vector of ones, and alternative mean specifications. We are using  
population‖ formulas for clarity. Table 2 is more interesting for our purposes. The 
top shows the multivariate regression for both mean-adjusted and standardized 
variables, which is often used to obtain variables thought to be normally-
distributed, and with expected value and variance of 0 and 1, respectively. This 
regression is helpful because it shows very clearly how the transformed regression 
coefficients (bxi*) are related to the original coefficients (bxi). For reasons that 
will become clear later on, we would like to retain the mean vector in the 
optimization; therefore, the bottom regression is the one of highest interest at this 
point in the analysis. 
 
3.Portfolio Optimizations Using Correlations: How 
 
Tables 3 and 4 carry the analysis over to the portfolio optimization arena. The top 
of Table 3 shows the atypical regression that yields optimal portfolio weights. The 
data matrix X, which includes vectors x1, x2, and x3, represents security returns. 
We regress these returns on the y variable, which is simply a vector of ones 
(actually any constant would do) and calculate OLS estimates (bx). Then, we 
compute optimal portfolio weights (w* = [w1* w2* w3*]’) by normalizing betas: 
wi* = bxi / Σ bxi*. The conventional mean-variance optimization appears at the 
bottom of Table 3 as well. It boils down to solving a simultaneous equation 
system (Ax = b) which, through a normalization, produces the optimal portfolio 
weights. 

 
 
Table 1: Initial data and deviations from the 
mean 
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Table 2: Mean-adjusting and 
standardizing 
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Let us observe carefully the atypical regression. Note that a) the values of the 
―y‖ in the regressions of Table 1 now appear as those of another ―exogenous 
variable‖; b) the usual intercept of ones has been moved to the left-hand-side; and 
c) the regression is run without an intercept. From a financial point to view, 
whether the vector [3 1 8 3 5] is a security or a portfolio does not matter. What 
matters is that the optimization will insure that each variable is properly valued 
and arbitraged in reference to the other securities. In passing, this table also makes 
obvious that the ―tangent‖ portfolio, in addition to implementing arbitrage 
conditions, is also an optimal predictor. This means it performs best within the 
class of linear estimators, under some conditions, and also the best in a larger 
class of estimators that do not include linearity restrictions. D1, D2, and D3 refer 
to the determinants of order (k) in the matrix A. Their values (positive for all 
ranks) indicate that A is positive definite, as any variance-covariance matrix must 
be.  
Table 4 presents the results we are after. A simple standardization, dividing every 
observation by its standard deviation provides the sought-after standardized 
mean-correlation system. The correlation matrix can be calculated using matrix 
functions in EXCEL with the variance covariance-formula when the variables 
have been standardized: target cells = mmult(transpose(data range – mean vector), 
data – mean vector). 
 
Note that the values in the right-hand-side vector, [1.690309, 2.12132, 5.59017]’, 
are the values of the means of the original variables divided by their standard 
deviation: that is, 1.690309 = 4/2.366432. This means the correlation optimization 
has the correlation table in the left-hand-side and ri/stdi in the right-hand-side. 
Noticing this is critical to establish the analytical equivalency of mean-variance 
and correlation-based optimizations and is something that remains implicit in the 
numerical examples.  
The investor performing the optimizations should have two objectives. The first 
one is to calculate the optimization numbers, which are found as the solution to 
the simultaneous equation system A x = b, where A and b are now the correlation 
matrix and the mean for the standardized data, respectively. The solution vector is 
bxs = [31.55243 -78.9603  
53.66563]’, which must be normalized to function as optimal portfolio weights 
(wis*) for the standardized variables. The second objective is to trace these 
weights back to the original variables, which requires dividing the solution 
coefficients by the standard deviation of the corresponding original variable (e.g., 
13.33333333 = bxis / stdxi = 31.55242551 / 2.366431913); this operation returns 
the non-normalized solutions to the mean-variance optimization (bottom of Table 
3, bx and wi*). The values we found last must be normalized to provide the 
original portfolio weights –that is, w1* = (bx1s/stdx1) / sum(bxis/stdxi) = 
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13.33333333 / 17.5 = 0.761904762). See appendix for further detail and analytical 
proof. 

 
 
Table 3: From regressions to optimal mean-variance 
portfolios 
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Table 4: Standardized variables and mean-correlation 
optimization 



IRJA-Indian Research Journal, Volume: 1, Serious: 1. Issue: December, 2013                   ISSN: 2347 - 7695  
     Online Available at www.indianresearchjournal.com 

 

9 

                                                                                                            ISSN: 2347-7695 

4. Concluding Comments 
 
The apparent attractiveness of correlation concepts in portfolio optimization 
initially motivated this research. By studying the effects of variable 
transformations in regressions we quickly ascertained how to perform portfolio 
optimizations using mean-correlation, instead of mean-variance analysis. Of 
course, the two alternative set-ups produce equivalent optimal portfolio weights if 
correlation-based number are transformed back to mean-variance ones. Without 
such transformation, correlation-based optimizations present some a priori 
advantages –clarification of risk-relations among securities and direct use of 
return-to-risk measures which link individual return-to-risk and portfolio ratios 
through the optimal weights. The advantages, however, are outweighed by the 
inherent limitations –the optimizations effect a transformation that makes 
interpreting the resulting weights difficult and may deform the risk-structure of the 
data in a nonlinear and hard-to-assess manner. On a more positive note, the 
analysis presented strengthens the role of regression methods in portfolio analysis. 
Further, the difficulty in finding transformations of the data that would both 
clarify the relationship between individual security characteristics and portfolio 
weights in a practical manner. In sum, correlation concepts clearly have some 
pedagogical value, and correlations do provide easy-to-understand information on 
potential diversification (or lack thereof) that one can obtain before running the 
optimization. 
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