
IRJA-Indian Research Journal, Volume: 1, Series: 3. Issue: May, 2014 ISSN: 2347-7695
Online Available at www.indianresearchjournal.com

Software Defect Prevention through Orthogonal Defect
Classification (ODC)

Author

 Sharad Kumar

 Assistant Professor

 St.Aloysious College

ABSTRACT

“Quality is never an accident; it is always the result of intelligent effort” [10]. In the process of
making quality software product, it is necessary to have effective defect prevention process, which
will minimize the risk of making defects /errors in software deliverables. An ideal approach would
involve effective software development process with an integrated defect prevention process. This
paper presents a Defect Prevention Model in which Defect Prevention Process(DPP) is integrated
into software development life cycle to reduce the defects at early stages itself, thereby reducing the
defect arrival rate as the project progresses to the subsequent stages. Orthogonal Defect
Classification (ODC) scheme involving defect trigger, defect type etc. are discussed in this work to
illustrate how ODC can be used in the defect prevention process. ODC can be used to measure
development progress with respect to product quality and identify process problems, which will help
to come out with “Best Practices” to be followed to eradicate the defects in the subsequent projects.

Indexing terms/Keywords

Defect, Defect Prevention Model, Defect Trigger, Orthogonal Defect Classification.

INTRODUCTION

Software defect can be defined as “Undesirable events occurring in the software development
process which in turn causes delay and lowers the quality of the software”. A defect in software may
be due to some type of error or fault.
Usually these faults are a result of human mistake, but sometimes they are caused by faulty
development tools, vague customer requirements, incorrect design, and wrong test cases etc. The
powers of man are not so extra-ordinary to never make mistakes; but from their errors and mistakes
the wise and good learn wisdom for a better future [4]. It is important to implement a process that
individuals and teams can make use of, to learn from their mistakes. A fundamental aspect of this
learning is the classification of defects using orthogonal defect classification. With a structured
classification scheme, an organization can analyze and learn about the types of defects that have
been discovered and their relative frequencies. Such classification scheme provides insight into what
improvements are needed to prevent or mitigate those defects in the future.

Defect Prevention is the process of improving quality and productivity by preventing the injection of
defects into a product. This paper highlights the various components involved at every stage of
software development, and the steps needed to implement the defect prevention process. The defect
prevention model proposed in this study is a process to continually improve the development
process. DPP is integrated into every stage of the development process. This approach ensures that
meaningful discussion takes place when it is fresh in everyone’s mind. It focuses on defect related
actions and process oriented preventive actions. This paper makes an attempt to adopt defect
prevention process in mini-ERP project of small and medium scale enterprise and the results were
obtained.

IRJA-Indian Research Journal, Volume: 1, Series: 3. Issue: May, 2014 ISSN: 2347-7695
Online Available at www.indianresearchjournal.com

LITERATURE SURVEY

The earlier studies in defect prevention were focused on defect prediction and decide upon the team
size of the testing resources required in order to complete the project on time and lot of effort were

utilized in the debugging and get the defects elimination instead of prevention. With the
enhancements to SDLC processes many companies have formulated their own defect prevention

solutions. One study by Natesan Karthkeyan [2] was to analyse various defect prevention
techniques, its advantages and disadvantages, their cost analysis vis-a-vis alternate solutions.

Research executed by Ms Prakriti Trivedi[3] uses a model for defect prevention using ODC as an
approach for defect classification and prevention. Another paper by Mohd. Faizan[6] have also

analysed various defect prevention techniques with restrictions to recent trends. The paper by Norm

Bridge[5] has presented a framework developed by IBM for classifying and analyzing defect data
collected during software development and describes how Orthogonal Defect Classification (ODC)

can be used to measure development progress with respect to product quality and identify process
problems. The paper by Prof. Pankaj Jalote[7] have focussed mostly on monitoring of quality control

activities, like defect prevention, for ensuring high quality, are used. In another study by Prof Suma
[1] the defect prevention issues faced by Small and Medium scale industries has been analysed and

solutions have been suggested. In this paper, we propose to combine and enhance the above
methodologies used, such as ODC for defect classification and analyse the defect patterns to arrive at

early stage defect reduction. This paper attempts to bring best practices for defect prevention based

on this mechanism for small and medium scale enterprise to implement it easily and effectively.

Defect Prevention Model With ODC

In a typical software development project, the test team becomes involved late in the process to find
defects and “test quality into the software.” Unfortunately, the later a defect is discovered, the more
expensive it is to repair and the greater the cost and impact on the overall project, just like the saying
“A stitch in time saves nine”. Consequently, if defects cannot be avoided altogether, a fundamental
goal of a successful defect prevention effort is to move quality verification and improvement to an
earlier stage in the software development cycle. Focusing on quality in the planning, design, and
early development stages pays big dividends later in the cycle. By moving quality assessment and
improvement “upstream” in the software development process [4], the test team can focus more on
the end user experience and on integration -level testing, rather than finding design or functional
errors.

This paper describes a new type of model which integrates the Software Lifecycle development
with defect prevention process. Figure 1 show the defect prevention model proposed in this paper.
The idea behind this model is that Defect prevention process should be incorporated at each phase of
software development life cycle.

By incorporating the defect prevention process at each phase of software development, reduces the
injection of defects at early stages itself thereby reducing the defect arrival rate as the project
progress to the subsequent stages. The Defect prevention process includes four major steps like

(i) Collect Defect Data

(ii) Classify defect data using simple ODC classification scheme

(iii) Analyze the defect data for defect pattern/defect signature and

(iv) Suggest preventive actions in the form of Best Practices

IRJA-Indian Research Journal, Volume: 1, Series: 3. Issue: May, 2014 ISSN: 2347-7695
Online Available at www.indianresearchjournal.com

Fig 1: Defect Prevention Model

Applying ODC in software project

Orthogonal Defect Classification (ODC) is a technique used for the last few years in the industry to
identify the root cause of the defects [9]. According to the Defect Prevention Model proposed in this
study, the defect classification process is done through ODC. This work gives the details related to
the actual steps involved in the classification of defects. According to ODC, when the defects are
collected and analyzed in-process during an ongoing software development, information on defects
is available at two specific points in time [9]. (1) When a defect is opened, the circumstances leading
to the exposure of a defect and the likely impact to the user are typically known. (2)When a defect is
closed after the fix is applied, the exact nature of the defect and the scope of the fix are known. ODC
categories capture the semantics of a defect from these two perspectives. By defining the activities
during a development process and their mapping to the ODC Triggers, an organization customizes
the generic scheme to the local process.

ODC Defect Attributes

IBM’s ODC classifies defect into eight defect attributes. Figure 2 depicts the ODC attributes used in
this study for defect classification.

Activities in the opener section:

 Activity refers to the actual task that is involved (Inspection, Reviews, Testing etc.) when

defects are found.

 Trigger describes the condition that had to exist for the defects to escape into subsequent

phases.

 Impact relate to impact on users in terms of customer satisfaction.

Activities in the closer section:

 Target represents the high-level entity (i.e., design, code, ID, etc.) that was fixed.

 Type represents the nature of corrective action that was made on the defect.

 Qualifier captures the element of either nonexistent or wrong or irrelevant information.

 Source identifies the origin of the defect (Design, code etc.)

 Age identifies the history of the target (i.e., design, code, ID, etc.) that had the defect

Fig 2: ODC defect attributes

Project Study

The implementation of defect prevention model is illustrated through an example of a commercial
project executed at medium scale Software Company. The defect data were collected from a mini-
ERP project. It is an 11 KLOC sized project which was done with a team of 20 members for a period
of 4 months. The defect data were classified using ODC to understand the dynamics of defects.
Based on the ODC classification, the semantics of defects were learnt and analysis of defect data was
made to arrive at defect pattern (Fig 3 & 4). “Best Practices” were then arrived at in the form of
defect prevention for the action team to implement in order to formulate process improvement

Activity/Defect Trigger

This study makes use of simple ODC classification scheme for categorization of defects. During the
opener section, the major activities covered in this work are Design Review, GUI Review and
Function Test. Defect trigger characterizes the process issues that allowed the defects to escape into
later phases. For the projects taken for this study, Trigger for function test include Coverage,

IRJA-Indian Research Journal, Volume: 1, Series: 3. Issue: May, 2014 ISSN: 2347-7695
Online Available at www.indianresearchjournal.com
Sequence, Variation and Interaction and Trigger for GUI review includes Navigation, Input devices,
Screen/Text characters, Widget/GUI behaviour and Widget/Icon appearance and the same has been
depicted in Fig 3. For these triggers, the high level entity (Target) that has to be fixed include
Requirement / Design and Coding in which majority fix of above 80% is attributable to coding phase
alone.

Fig 3: Simple Orthogonal Defect Classification

Defect Type

Defect type primarily deals with what caused the defect. A programmer making the correction
usually chooses the defect type. In each defect type, a distinction is made between something missing
or something incorrect. In this study, the five defect types identified were Algorithm, assignment,
function, interface and checking. Figure 4 shows the defect types that affect coding and design of
software development.

Algorithm: Defect due to problem in procedure or overloaded function.

Assignment: Defects due to values not initialized in few lines of code.

Function: Defect that affects end-user interfaces, product interfaces etc which requires the change in

design.

Interface: Defect occur while interacting with other components or modules of the system

Checking: Defect in program logic which performs data validation check.

Figure 4: Defect Type distribution

Results and analysis

The following information was observed during the implementation of defect prevention model for
Mini-ERP project. While the defect data were classified using ODC, It was found that most of the
defects are related to Base Code (83%) and GUI (14%). Some observations were discovered when
looking at Triggers of defect and compared to their Category. Figure 3 shows distribution of triggers
and targets attributed to defect types represented from Functional testing and GUI. Analyzing Figure
4 shows how much of these defect targets are attributable to Algorithm, Assignment, Function,
Interface and Checking of both coding and design phase. These observations are then analyzed to
arrive at best practices approach for defect prevention to come out of these lacunae in the system
based on ODC observations which has been tabulated in Table 1(Appendix). These best practices
can be applied and further streamlined along with their leanings to make the development process
cleaner and defect free. This will enable the company to have more focus on process and systems
than on individuals.

IRJA-Indian Research Journal, Volume: 1, Series: 3. Issue: May, 2014 ISSN: 2347-7695
Online Available at www.indianresearchjournal.com

CONCLUSION AND FUTURE ENHANCEMENT

To err is human, but defect prevention practices enhance the ability of software developers to learn
from those errors and, more importantly, learn from the mistakes of others [13]. The benefits of
implementing defect prevention are reducing overall cost, schedule, and resources and increasing the
quality of a software product and the same is achieved through defect prevention model proposed in
this study. The defect prevention model proposed in this study helps to eliminate the defects at every

stage of software development, take preventive action for defect elimination and to avoid its
recurrence. ODC way of classifying defects helped the practitioners point to the process area where
preventive action has to be taken. This study made an attempt to deploy Simple ODC classification
scheme into a project developed at medium scale IT industry, and paved the way to arrive at “Best
Practices” to be followed for similar projects in order to realize the above benefits of defect
prevention. This paper is limited to using some defect attributes of ODC for classification. As the job
is human intensive requiring ODC trained personnel, planning to develop an open source tool which
will automatically classify defect data based on ODC and generates a diagnostic report for taking
preventive actions against the defect. When such a tool is developed, it will be of cost beneficial to
small and medium scale IT industry and also help them to produce defect free IT solutions.

APPENDIX

Table 1: Best Practices To Be Followed - Preventive Measures Decided Based On Defect

Data

Activity

 Trigger

Area

 Defect

Best Practices To Be Adopted

Target

Most of the Functional defect is detected in the Code
(85.88%) -

so more attention in this area is essential for Defect
Prevention.

(a) Traceability Matrix, to trace each Functional
Requirement till

Source Code level should be made mandatory and

Code to be

released for Testing after a formal review of the
updated

Functional

Coverage

Code

Traceability Matrix for each requirement. An

Independent review

of the Traceability Matrix by the Quality Team should
also be

Testing

mandated.

(b) Before commencing with the actual coding,
Developers

should document the Program Specification for each
Source

code and it should be formally reviewed by the Project
Lead -

This step would validate if the Developer has
understood the

actual requirement and can transform the Functional
coverage in the Source code.

IRJA-Indian Research Journal, Volume: 1, Series: 3. Issue: May, 2014 ISSN: 2347-7695
Online Available at www.indianresearchjournal.com

(a) Majority of design defect comes under
Function/Class/Object

Defect Type. The design perspective of each
requirement should

be understood and dependencies with external
interfaces should

be taken care. Formal Design review with key
Technical

members of the project, Interface teams, Vendors
(if any),

System and Database Administrators should be
mandated

Design

before proceeding with the Coding
phase.

(b) The Technical Lead responsible for Design
should have

Overall knowledge about the Project Functionalities,
Technical

Implementation, System Environment, Deployment
challenges,

etc. to Design a perfect solution for the project. Any
change in

Design at a later stage would have a heavy impact in
the Project

timeline - so should be taken care in the Design phase
itself.

 Requireme

nt

(a) Requirement related defects, captured in the same
phase is

 minim

al

- so can be ignored for further

analysis.

(a) All negative scenarios and input of negative values
should be

Code

handled in the Source code. So, developer should
document all

 such negative cases in the Program Specification
and it

should be reviewed by the Technical Lead for

completeness.

Variation

Design

(a) A general list of negative cases to be handled
should be

included as a part of the Design document.

(a) In most cases, the negative scenarios to be handled
are not

 Requireme

nt

documented as a part of the Functional Specification. It
comes

 as a part of the experience and the Knowledge Base of
the

 related project can be referred to avoid such errors.

(a) Defects arising for the Trigger area 'Sequence', are
more

related to Integration related issues. It is just not
enough for the

Developer to understand his/her own code related
functionality,

 but a knowledge on the overall project is essential to

IRJA-Indian Research Journal, Volume: 1, Series: 3. Issue: May, 2014 ISSN: 2347-7695
Online Available at www.indianresearchjournal.com

avoid such

 Code
defects. Shared source code / common routine in the
project has

to be discussed, documented in detail and should be

agreed

Sequence

 betwee
n

the
stakeholders

involv
ed

i
n

Integration. A
final

 approved document on common routines is a must

to avoid

such errors (To be circulated before Source code
development).

Design

(a)
The

document
specified above on

Workflow
Sequence

should be written and agreed in the Design phase.

 Requireme

nt

(a) Scenarios that may have a sequential execution
must be well

 documented with sample Use
Cases.

(a) This is related more to the 'Sequence' Trigger area,
as it

Interaction

Code /
involves the error that arrises in the sequence of
execution. So,

 Design /
Req

 Best practices specified in Sequence Trigger Area
can be

 referred here.

 Widget/

Most of the GUI Review commnets is in the Code

(97.78%) - so

 GUI Review

Icon

Code

more attention in this area is essential for Defect

Prevention.

(14.65%)

Appearance

IRJA-Indian Research Journal, Volume: 1, Series: 3. Issue: May, 2014 ISSN: 2347-7695
Online Available at www.indianresearchjournal.com

Activity

 Trigger
Area

 Defect

Best Practices To Be Adopted

Target

(a) Before starting the actual coding, a prototype
of the

application should be built to finalize on the look and
feel of the

 application.

(a) Screens of the prototype can be embedded in the
Design

document to understand the application better. Senior
Technical

 Design
developer along with the team can work in
parallel with the

Technical lead to assist him in bringing such add on
features in

 the Design document.

Widget/

(a) Straightforward scenarios of the GUI Behaviour
can be

 captured in the prototype. Other scenarios on
Page reload,

 GUI Code /
browser compatibility, etc can be referred from the
Knowledge

Design

 Base of the similar successfully implemented
projects and

Behaviour

 this has to be documented in the Design document
for the

Navigation

project.

(a) Font, Size, Colour and other look and feel features
can be

Screen Text/

Code /

 broughtout upfront if all this are taken care in the
Prototype

Development for the project. Cascade Style Sheets
(CSS) can

Char

Design

be developed and used in common among all
Developers of the

project.

(a) As a part of the Requirement capture, details on
the Input

Input

Devices

Code /

 Devices to be supported should be well documented.

Program

Design

 Language support for various Input devices has to be
analyzed

and documented in the Design Manual.

 System Test
(a) System Test related defects is minimal - so can be
ignored for

IRJA-Indian Research Journal, Volume: 1, Series: 3. Issue: May, 2014 ISSN: 2347-7695
Online Available at www.indianresearchjournal.com

 (2.18%) further analysis.

REFERENCES

[1] Suma V, T V Rajagopalakrishnan Nair, “Defect Prevention Approach in Medium Scale IT
Enterprises”, National Conference on Recent Research Trends in Information Technology”
Banglore (2008)

[2] Karthikeyan Natesan, “Using Defect Prevention Techniques in SDLC”, “International

Journal of Information
Technology & Computer Science (IJITCS) (ISSN No : 2091-1610) Volume 5 : Issue on
September / October , 2012

[3] Prakriti Trivedi, Som Pachori, "Modelling and Analysing of Software Defect Prevention

Using ODC", “(IJACSA)

International Journal of Advanced Computer Science and Applications,Vol. 1, No. 3,

September 2010

[4] Marc McDonald; Robert Musson; Ross Smith, “The Practical Guide to Defect Prevention”,

Microsoft Press, 2007.

[5] Norm Bridge, Corinne Miller “Orthogonal Defect Classification Using Defect Data
to Improve Software Development”, Motorola Corporate Software Center,
Schaumburg, Illinois.

[6] Muhammad Faizan,Muhammad Naeem Ahmed Khan,Sami Ulhaq, “Contemporary Trends

in Defect Prevention: A Survey Report”, International Journal of Modern Education and
Computer Science (IJMECS) april 2012

[7] Pankaj Jalote, K. Dinesh, S. Raghavan, M. R. Bhashyam, M. Ramakrishnan “Quantitative

Quality Management through Defect Prediction and Statistical Process Control”, Infosys
Technologies Ltd. (2000)

[8] Khaleel Ahmad, Nitasha Varshney, “On Minimizing Software Defects during New Product

Development Using Enhanced Preventive Approach” International Journal of Soft
Computing and Engineering (IJSCE) ISSN: 2231-2307, Volume-2, Issue-5, November 2012

[9] Chillarege, R., Bhandari, I.S., Chaar, J.K., Halliday, M.J., Moebus, D.S., Ray, B.K., and

Wong,

[10] M.-Y., "Orthogonal Defect Classification - A Concept for In-Process
Measurements," IEEE Transactions on Software Engineering, vol. 18, no. 11,
November 1992, pp.943-956.

[11] Yang GU “Adopting ODC to improve software quality: A case study” (2006)

[12] http://www.quotationspage.com/quote/5219.html

[13] Mukesh Soni, “Defect Prevention: Reducing Costs and Enhancing Quality” (2010)

IRJA-Indian Research Journal, Volume: 1, Series: 3. Issue: May, 2014 ISSN: 2347-7695
Online Available at www.indianresearchjournal.com

Author’ biography with Photo

1
First Author – Sakthi Kumaresh is a Ph D candidate at Bharathiar University, Coimbatore, India;

Currently working as
Associate professor at Department of Computer Science, MOP Vaishnav College, Chennai. She

obtained her Master’s
Degree from Madurai Kamaraj University, Madurai, TN, India in 1996 and M Phil in Computer
Science from Periyar University, Salem, TN, India in 2006. She has decade of teaching experience.
Her areas of specialization include Software Engineering, Software Project Management, Software
Testing, Software Quality Management and Unified Modeling Language. She is doing research in
the area of Software Quality Engineering. She has publications in National conferences and
International journal..

2
Second Author – Dr. Baskaran Ramachandran is working as the Associate professor in Department

of computer science, Anna University, Chennai. He has obtained his M.E. and Ph.D. in the field of
Computer Science and Engineering in Anna University, Chennai, India. He is having around a
decade of experience as an Academician and his research areas include Multimedia and principles,
Software quality engineering, Software Agents and Distributed networking. He has published around
50 research papers in National and International Journals and Conferences. He is the member of
various forums. He is the editor and the reviewer in various journals. He is guiding research scholars
working in area of software standards for Attributes Specific SDLC Models & Evaluation and Metric
Based Efficient Traffic Management.

